需求:
根据人的上半边脸预测下半边脸,用各种算法取得的结果与原图比较
- 思考:
这是一个回归问题,不是分类问题(人脸数据不固定) 数据集一共包含40个人,每一个人10张照片,分布规律 每一个人取出8张照片作为训练数据,2张照片作为测试数据 样本特征和样本标签如何拆分?上半边脸作为样本特征,下半边脸作为特征标签
————————————————
导包
import numpy as np import matplotlib.pyplot as plt %matplotlib inline #构建方程 from sklearn.linear_model import LinearRegression,Ridge,Lasso #不会构建方程 from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn import datasets from sklearn.model_selection import train_test_split
### 导入datasets中400位人脸数据数据
faces = datasets.fetch_olivetti_faces() X = faces.data images = faces.images y = faces.target display(X.shape) display(images.shape) display(y.shape)
(400, 4096)
(400, 64, 64)
(400,)
plt.figure(figsize=(2,2)) index = np.random.randint(0,400,size =1)[0] img = images[index] plt.imshow(img,cmap = plt.cm.gist_gray)
将X(人脸数据)分成上半张人脸和下半张人脸
X_up = X[:,:2048] X_down = X[:,2048:] index = np.random.randint(0,400,size =1)[0] axes = plt.subplot(1,3,1) up_face = X_up[index].reshape(32,64) axes.imshow(up_face,cmap = plt.cm.gray) axes = plt.subplot(1,3,2) down_face = X_down[index].reshape(32,64) axes.imshow(down_face,cmap = plt.cm.gray) axes = plt.subplot(1,3,3) face = X[index].reshape(64,64) axes.imshow(face,cmap = plt.cm.gray)
X = X_up.copy() y = X_down.copy() display(X.shape,y.shape)
(400, 2048)
(400, 2048)
python
32*64
2048
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size =30) estimators = {} #线性回归 estimators['linear'] = LinearRegression() estimators['ridge'] = Ridge(alpha=0.1) estimators['knn'] = KNeighborsRegressor(n_neighbors=5) estimators['lasso'] = Lasso(alpha=0.1) estimators['ElasticNet'] = ElasticNet() estimators['tree'] = DecisionTreeRegressor()#决策树费时间 2048个样本特征 #criterion = 'mse' 线性的是gini 和熵 都是越小越好
分别调用这六个每个算法
result = {} for key,model in estimators.items(): model.fit(X_train,y_train) y_ = model.predict(X_test)#预测的是下班长人脸 result[key] = y_
结果可视化
plt.figure(figsize=(8*2,2*10,)) for i in range(0,10): #绘制第一列,上班张人脸 axes = plt.subplot(10,8,i*8+1) up_face = X_test[i].reshape(32,64) axes.imshow(up_face,cmap= plt.cm.gray) #取消刻度 axes.axis('off') #设置标题(只在第一列显示) if i == 0: axes.set_title('upface') #第七列绘制整张人脸 axes = plt.subplot(10,8,i*8+8) down_face = y_test[i].reshape(32,64) #上下脸拼接 true_face = np.concatenate([up_face,down_face]) axes.imshow(true_face,cmap= plt.cm.gray) axes.axis('off') if i == 0: axes.set_title('trueface') #绘制第二列到第六列 ,算法预测的数据result, #字典 key 算法value 预测人脸 #用enumerate 循环增加了个j for j , key in enumerate(result): #j,0,1,2,3,4 axes = plt.subplot(10,8,i*8+2+j) y_ = result[key] pre_downface = y_[i].reshape(32,64) pre_face = np.concatenate([up_face,pre_downface]) axes.imshow(pre_face,cmap = plt.cm.gray) axes.axis('off') if i == 0: axes.set_title(key)
版权声明:如无特殊说明,文章均为本站原创,转载请注明出处
本文链接:http://wakemeupnow.cn/article/face/